Columnistas
Autor: Agustín de Vicente , 9 de marzo de 2021

IBM impulsa descubrimiento de materiales para hacer dispositivos más sostenibles

Compartir

Opinión de Katia Moskvitch, IBM Research Editorial Lead

Un átomo por aquí, un átomo por allá…

Cuantos más átomos, más compleja se vuelve una molécula: un cuasi-infinito de posibles configuraciones moleculares. Esto a su vez significa un proceso largo, costoso y tedioso de prueba y error para el descubrimiento de materiales, donde el éxito no está garantizado. Pero no tiene por qué ser así. Gracias al enorme impulso que la inteligencia artificial está dando al diseño molecular tradicional y a la computación cuántica que ya se encuentra preparada para intervenir, estamos entrando en la era del Descubrimiento Acelerado. Es la era del descubrimiento rápido de nuevos materiales avanzados, que son vitales para la fabricación de productos sostenibles que podrían ayudarnos a abordar una gran cantidad de desafíos globales, desde el cambio climático hasta la reducción de desechos y la seguridad alimentaria y energética.

Todavía estamos en los comienzos, pero los investigadores de IBM ya están aplicando este nuevo enfoque impulsado por la IA para diseñar materiales más sostenibles. Un equipo ha creado recientemente nuevas moléculas denominadas generadores de fotoácidos (PAGs). Con mejoras adicionales, podrían ayudar a producir dispositivos informáticos más amigables para el medio ambiente.

Los PAG existen desde la década de 1980 y desempeñan un papel vital en la fabricación de chips de computadora. En un proceso llamado litografía, la luz ultravioleta genera un patrón tridimensional en una capa de un material fotosensible: una fotorresistencia. Los fotones de luz descomponen el PAG dentro de la fotorresistencia para producir moléculas de ácido muy fuerte. Estas moléculas catalizan las reacciones químicas que crean el patrón, lo cual define las estructuras físicas de un chip de computadora, tales como puertas de transistores o cables de interconexión.

Demasiado lento, costoso y arriesgado

Las mejoras en las fotorresistencias y la litografía jugaron un papel importante en las últimas dos décadas del desarrollo de chips. Nos han permitido empaquetar más y más transistores en chips cada vez más pequeños, lo cual conduce a dispositivos cada vez más delgados y potentes.

Pero hay un problema.

Los PAG son una de varias clases de compuestos químicos que recientemente han sido objeto de una mayor indagación por parte de los reguladores ambientales globales. Los investigadores se han lanzado a la carrera para crear otros más sostenibles, para permitir un futuro de computación sostenible “verde”. Desafortunadamente, el proceso tradicional de descubrir nuevos materiales es demasiado lento, demasiado costoso y demasiado arriesgado para abordar este desafío de manera oportuna y práctica.

“Tradicionalmente, los investigadores usarían su propio conocimiento y la información que encontrarían en la literatura publicada para diseñar un PAG, con la esperanza de que tuviera las propiedades deseadas”, señala el investigador de IBM y experto en materiales electrónicos de Almaden, Dan Sanders. “Con base en ese diseño inicial, luego seguirían muchos ciclos de síntesis, caracterización y prueba de candidatos hasta que lograron crear uno satisfactorio. Por lo general, llevaría meses, a veces años, incluso con la ayuda de computadoras, ejecutar simulaciones avanzadas”.

Así que su equipo optó por un enfoque diferente, uno con la ayuda de la IA.

El uso de la IA en la ciencia de los materiales no es nuevo. Pero incluso hace solo cinco años, la IA era principalmente buena para predecir las características de un material. Por ejemplo, si un investigador ingresara una estructura molecular conocida, la IA predeciría correctamente, digamos, que su temperatura de fusión es de 100 grados Celsius. Sin embargo, “los químicos industriales estaban mucho más interesados ​​en aplicar la IA para diseñar rápidamente una amplia variedad de estructuras moleculares más allá de la creatividad humana”, señala Seiji Takeda, investigador de IBM en Tokio.

“Solo piénselo: conocemos materiales que tienen mil millones de configuraciones moleculares conocidas diferentes, pero potencialmente puede haber al menos 1060 veces más”, agrega. “Y los materiales útiles son solo una pequeña parte de eso. Es como encontrar un pequeño diamante perdido en el Sahara”.

Responsabilidad Social

Powered by Global Channel